Relative Efficiency of Maximum Likelihood and Other Estimators in a Nonlinear Regression Model with Small Measurement Errors
نویسندگان
چکیده
We compare the asymptotic covariance matrix of the ML estimator in a nonlinear measurement error model to the asymptotic covariance matrices of the CS and SQS estimators studied in Kukush et al (2002). For small measurement error variances they are equal up to the order of the measurement error variance and thus nearly equally efficient.
منابع مشابه
Comparison of Small Area Estimation Methods for Estimating Unemployment Rate
Extended Abstract. In recent years, needs for small area estimations have been greatly increased for large surveys particularly household surveys in Sta­ tistical Centre of Iran (SCI), because of the costs and respondent burden. The lack of suitable auxiliary variables between two decennial housing and popula­ tion census is a challenge for SCI in using these methods. In general, the...
متن کاملParametric Estimation in a Recurrent Competing Risks Model
A resource-efficient approach to making inferences about the distributional properties of the failure times in a competing risks setting is presented. Efficiency is gained by observing recurrences of the compet- ing risks over a random monitoring period. The resulting model is called the recurrent competing risks model (RCRM) and is coupled with two repair strategies whenever the system fails. ...
متن کاملJackknifed Liu-type Estimator in Poisson Regression Model
The Liu estimator has consistently been demonstrated to be an attractive shrinkage method for reducing the effects of multicollinearity. The Poisson regression model is a well-known model in applications when the response variable consists of count data. However, it is known that multicollinearity negatively affects the variance of the maximum likelihood estimator (MLE) of the Poisson regressio...
متن کاملPositive-Shrinkage and Pretest Estimation in Multiple Regression: A Monte Carlo Study with Applications
Consider a problem of predicting a response variable using a set of covariates in a linear regression model. If it is a priori known or suspected that a subset of the covariates do not significantly contribute to the overall fit of the model, a restricted model that excludes these covariates, may be sufficient. If, on the other hand, the subset provides useful information, shrinkage meth...
متن کاملA Semiparametric Regression Model for Panel Count Data: When Do Pseudo-likelihood Estimators Become Badly Inefficient?
We consider estimation in a particular semiparametric regression model for the mean of a counting process under the assumption of “panel count” data. The basic model assumption is that the conditional mean function of the counting process is of the form E{N(t)|Z} = exp(θ′Z)Λ(t) where Z is a vector of covariates and Λ is the baseline mean function. The “panel count” observation scheme involves o...
متن کامل